Точка и прямая
ТеорияТочка в системе двух плоскостей проекций π1, π2
Выше (§ 2) было сказано, что проекция точки не определяет положения точки в пространстве, и чтобы, имея проекцию точки, установить это положение, требуются дополнительные условия. ПодробнееТочка в системе трех плоскостей проекций π1, π2,π3
В ряде построений и при решении задач оказывается необходимым вводить в систему π1, π2 и другие плоскости проекций. Известно, что в практике составления чертежей, например машин и их частей, чертеж преимущественно содержит не два, а большее число изображений.ПодробнееОртогональные проекции и система прямоугольных координат
Модель положения точки в системе π1, π2, π3 (рис. 16) аналогична модели, которую можно построить, зная прямоугольные координаты 1) этой точки, т. е. числа, выражающие ее расстояния от трех взаимно перпендикулярных плоскостей — плоскостей координат.ПодробнееТочка в четвертях и октантах пространства
В § 4 было сказано, что плоскости π1 и π2 при пересечении образуют четыре двугранных угла; их называют квадрантами или четвертями пространства.ПодробнееОбразование дополнительных систем плоскостей проекций
До сих пор мы встречались с двумя системами плоскостей проекций — π1, π2 и π1, π2, π3.ПодробнееЧертежи без указания осей проекций
В дальнейшем изложении наряду с чертежами, содержащими оси проекций, будут применяться чертежи без указания осей.ПодробнееПроекции отрезка прямой линии
Положим, что даны фронтальные и горизонтальные проекции точек А и В (рис. 45). Проведя через одноименные проекции этих точек прямые линии, мы получаем проекции отрезка АВ — фронтальную (А" В") и горизонтальную (А'В')1).ПодробнееОсобые (частные) положения прямой линии относительно плоскостей проекций
Прямая линия может занимать относительно плоскостей проекций особые (иначе, частные) положения. Рассмотрим их по следующим двум признакам:ПодробнееТочка на прямой. Следы прямой
На рис. 60 дан чертеж некоторой прямой общего положения, проходящей через точку А. Если известно, что точка В принадлежит этой прямой и что горизонтальная проекция точки В находится в точке В', то фронтальная проекция В" определяется так, как показано на рис. 60.ПодробнееПостроение на чертеже натуральной величины отрезка прямой общего положения и углов наклона прямой к плоскостям проекций π1,π2
Из рассмотрения левой части рис. 69 можно заключить, что отрезок АВ является гипотенузой прямоугольного треугольника АВ1, в котором один катет равен проекции отрезка (А1 = А°В°), а другой катет равен разности расстояний концов отрезка от плоскости проекций π0.ПодробнееВзаимное положение двух прямых
Параллельные прямые. К числу свойств параллельного проецирования относится следующее: проекции двух параллельных прямых параллельны между собой.ПодробнееО проекциях плоских углов
1. Если плоскость, в которой расположен некоторый угол, перпендикулярна к плоскости проекций, то он проецируется на эту плоскость проекций в виде прямой линии.Подробнее