Метод Монжа

Теория

Сведения и приемы построений, обусловливаемые потребностью в плоских изображениях пространственных форм, накапливались постепенно еще с древних времен. В течение продолжительного периода плоские изображения выполнялись преимущественно как изображения наглядные. С развитием техники первостепенное значение приобрел вопрос о применении метода, обеспечивающего точность и удобоизмеримость изображений, т. е. возможность точно установить место каждой точки изображения относительно других точек или плоскостей и путем простых приемов определить размеры отрезков линий и фигур. Постепенно накопившиеся отдельные правила и приемы построений таких изображений были приведены в систему и развиты в труде французского ученого Монжа, изданном в 1799 г. под названием «Géometrie déscriptive».

Гаспар Монж (1746—1818) вошел в историю как крупный французский геометр конца XVIII и начала XIX вв., инженер, общественный и государственный деятель в период революции 1789— 1794 гг. и правления Наполеона I, один из основателей знаменитой Политехнической школы в Париже, участник работы по введению метрической системы мер и весов. Будучи одним из министров в революционном правительстве Франции, Монж много сделал для ее защиты от иностранной интервенции и для победы революционных войск. Монж не сразу получил возможность опубликовать свой труд с изложением разработанного им метода. Учитывая большое практическое значение этого метода для выполнения чертежей объектов военного значения и не желая, чтобы метод Монжа стал известен вне границ Франции, ее правительство запретило печатание книги. Лишь в конце XVIII столетия это запрещение было снято. После реставрации Бурбонов Гаспар Монж подвергся гонению, вынужден был скрываться и кончил свою жизнь в нищете. Изложенный Монжем метод — метод параллельного проецирования (причем берутся прямоугольные проекции на две взаимно перпендикулярные плоскости проекций) — обеспечивая выразительность, точность и удобоизмеримость изображений предметов на плоскости, был и остается основным методом составления технических чертежей.

Слово прямоугольный часто заменяют словом ортогональный, образованным из слов древнегреческого языка, обозначающих «прямой» и «угол». В дальнейшем изложении термин ортогональные проекции будет применяться для обозначения системы прямоугольных проекций на взаимно перпендикулярных плоскостях.

В данном курсе преимущественно рассматриваются прямоугольные проекции. В случае применения параллельных косоугольных проекций это будет каждый раз оговариваться.

Начертательная геометрия (н.г.) стала предметом преподавания в нашей стране с 1810 г., когда в только что основанном Институте корпуса инженеров путей сообщения начались занятия наряду с другими дисциплинами учебного плана и по начертательной геометрии. Это было вызвано все возрастающим ее практическим значением.

В Институте корпуса инженеров путей сообщения 1) протекала преподавательская деятельность окончившего этот институт в 1814 г. Якова Александровича Севастьянова (1796— 1849), с именем которого связано появление в России первых сочинений по н. г., сначала переводных с французского языка, а затем первого оригинального труда под названием «Основания начертательной геометрии» (1821 г.), в основном посвященного изложению метода ортогональных проекций.

1) Теперь Ленинградский институт инженеров железнодорожного транспорта им. академика В. Н. Образцова.

Лекции Я. А. Севастьянов читал на русском языке, хотя преподавание в те годы вообще велось на французском языке. Тем самым Я. А. Севастьянов положил начало преподаванию и установлению терминологии в н. г. на родном языке. Еще при жизни Я. А. Севастьянова н. г. вошла в учебные планы ряда гражданских и военных учебных заведений.

Крупный след в развитии н. г. в XIX столетии в России оставили Николай Иванович Макаров (1824— 1904), преподававший этот предмет в Петербургском технологическом институте, и Валериан Иванович Курдюмов (1853—1904), который, будучи профессором Петербургского института инженеров путей сообщения по кафедре строительного искусства, читал в этом институте курс н. г. В своей практике преподавания В. И. Курдюмов приводит многочисленные примеры применения н. г. к решению инженерных задач.

Деятельностью и трудами В. И. Курдюмова как бы завершился почти столетний период развития н. г. и ее преподавания в России. В этот период наибольшее внимание было уделено организации преподавания, созданию трудов, предназначенных служить учебниками, разработке улучшенных приемов и способов решения ряда задач. Это были существенные и необходимые моменты в развитии преподавания н. г.; однако ее научное развитие отставало от достижений в области методики изложения предмета. Лишь в трудах В. И. Курдюмова теория получила более яркое отражение. Между тем в некоторых зарубежных странах в XIX столетии н. г. уже получила значительное научное развитие. Очевидно, для ликвидации отставания и для дальнейшего развития научного содержания н. г. необходимо было расширить ее теоретическую основу и обратиться к исследовательской работе.

Это можно видеть в трудах и деятельности Евграфа Степановича Федорова (1853 — 1919), знаменитого русского ученого, геометра-кристаллографа, и Николая Алексеевича Рынина (1877— 1942), которые уже в последние годы перед Великой Октябрьской социалистической революцией обратились к развитию начертательной геометрии как науки. К настоящему времени начертательная геометрия как наука получила значительное развитие в трудах советских ученых Н.А.Глаголева (1888— 1945), А. И. Добрякова (1895-1947), Д. Д. Мордухай - Болтовского (1876-1952), М. Я. Громова (1884-1963), С. М. Колотова (1885- 1965), Н. Ф. Четверухина (1891-1974), И. И. Котова (1909-1976) и многих других.


Вопросы к главе I

  1. Как строится центральная проекция точки?
  2. В каком случае центральная проекция прямой линии представляет собой точку?
  3. В чем заключается способ проецирования, называемый параллельным?
  4. Как строится параллельная проекция прямой линии?
  5. Может ли параллельная проекция прямой линии представлять собой точку?
  6. Если точка принадлежит данной прямой, то как взаимно располагаются их проекции?
  7. В каком случае в параллельной проекции отрезок прямой линии проецируется в натуральную свою величину?
  8. Что такое «метод Монжа»?
  9. Как расшифровывается слово «ортогональный»?